

Off-Grid Lighting Assessment

Côte D'Ivoire

A full transition to energy efficient off-grid lighting would result in the following benefits:

Economic and Energy Benefits

400.6 million USD

annual savings*

6 months

payback period

303 million litres of kerosene,166 million candles and41 million batteries annual savings*

2.2 million barrels of crude oil energy equivalent

Climate Change Mitigation Benefits

Potential Savings:

820.2 thousand tonnes of carbon dioxide emissions reduction annually

Equivalent to:

205.1 thousand mid-size cars off the road

Environmental, Health and Social Benefits

Annual savings of 149.2 USD per household per year

2.5 million households with better quality light

Reduction or elimination of fuel-related health issues, fire hazards and toxic fumes

^{*} National savings estimate shown is based on the average, national end-user price for kerosene. In countries where kerosene is subsidised, the benefit accruing to the nation will be higher.

Off-Grid Lighting Assessment

Country Specific Data and Input Assumptions (2010)

General Information			
Total population	19.7 million		
Off-grid population	10.4 million		
On-grid, under-serviced population	2.8 million		
Gross Domestic Product	23 billion		
Gross Domestic Product per capita	1,154 USD		
Percent of population on-grid	47.3%		
Off-grid and under-serviced households	2.5 million		

Pricing Information (in USD)			
Litre of kerosene	1.20 - 1.62		
Candle	0.10 each		
Kerosene lamp (glass cover)	8.90 each		
Kerosene lamp (simple wick)	0.80 each		
Torch (flashlight)	2.00 each		
Batteries (for torch/flashlight)	0.50 per battery		
Solar lantern (small)	18.00 each		
Solar lantern (large)	35.00 each		

Average Daily Operating Hours		
Off-grid and under-serviced households	3.6 hours/day	
Off-grid and under-serviced small business	4.0 hours/day	

Installed Stock Estimates* (millions)		
Light source	Households	Businesses
Kerosene lamp (glass cover)	5.1 (59.8%)	0.5 (68.6%)
Kerosene lamp (simple wick)	2.3 (26.8%)	0.0 (5.7%)
Torch (flashlight)	0.8 (8.9%)	0.1 (11.4%)
Candles (light points)	0.4 (4.5%)	0.1 (14.3%)
Total:	8.6 million	0.7 million

Average Household Monthly Consumption*			
Light energy source	Units	Cost	
Kerosene	9.5 litres	11.38 USD	
Candles	4.3 candles	0.43 USD	
Batteries	1.2 batteries	0.61 USD	
Total:		12.42 USD	

Simple Payback Periods [*]			
Sectors evaluated	Households	Businesses	
Kerosene lamp (glass cover)	0.6 years	0.5 years	
Kerosene lamp (simple wick)	0.4 years	0.4 years	
Torch (flashlight)	0.7 years	0.7 years	
Candles	0.5 years	0.5 years	
Weighted national average:	0.5 years	0.5 years	

^{*} Includes on-grid, under-serviced households and businesses, if applicable

References

- Adkins, Edwin, Sandy Eapen, Guatam Nair and Vijay Modi. 2010. Off-grid energy services for the poor: Introducing LED lighting in the Millennium Villages Project in Malawi Energy Policy Journal.
- Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH. 2011. Solar Lamps Field Test Uganda, Final Report.
- Dorling et al., The Worldmapper, University of Sheffield and University of Michigan, accessed September 2012, http://www.worldmapper.org/display.php?selected=191
- Electrification level: Access to electricity (% of population, 2009). World Bank. Accessed September 2012 from: http://data.worldbank.org/indicator/EG.ELC.ACCS.ZS.
- Hamins, Anthony, Matthew Bundy and Scott E. Dillon. 2005. Characterization of candle flames. Journal of Fire Protection Engineering. Vol 15, Nov 2005.
- International Finance Corporation and World Bank. 2010. Solar Lighting for the Base of the Pyramid: Overview of an Emerging Market. July 2010.
- International Finance Corporation and World Bank. 2011. The Off-Grid Lighting Market in Sub-Saharan Africa: Market Research Synthesis Report. February, 2011.
 International Finance Corporation. 2012. Lighting Asia: Solar Off-Grid Lighting Market Analysis of India. Bangladesh. Nepal. Pakistan. Indonesia. Cambodia. and Philippines-
- International Finance Corporation. 2012. Lighting Asia: Solar Off-Grid Lighting Market Analysis of India, Bangladesh, Nepal, Pakistan, Indonesia, Cambodia, and Philippines—Final Report. 2012.
- IPCC, 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Chapter 5: Non-Energy Products from Fuels and Solvent Use.
- Mahapatra, Sadhan, H.N. Chanakya and S. Dasappa. 2009. Carbon emissions rate of candles: Evaluation of various energy devices for domestic lighting in India—Technology, economics and CO2 emissions. Energy for Sustainable Development, Vol 13, Issue 4, Dec 2009, 271–279.
- Mills, Evan. 2002. The \$230-billion Global Lighting Energy Bill. International Association for Energy-Efficient Lighting (newsletter), June, 2002.
- Mills, Evan. 2003. Technical and Economic Performance Analysis of Kerosene Lamps: Alternative Approaches to Illumination in Developing Countries; Lawrence Berkeley National Laboratory. 2003.
- Mills, Evan. 2005. The Specter of Fuel-Based Lighting. Science, Volume 308. 27 May 2005.
- National Electrical Manufacturers Association. 2011. Life Cycle Impacts of Alkaline Batteries with a Focus on End-of-Life. February 2011.
- Population estimates use year 2010: The World Bank Data Catalogue. Accessed October 2012 from: http://data.worldbank.org/indicator/SP.POP.TOTL.
- U.S. International Trade Commission, 2010. Petroleum Wax Candles from China, Investigation No. 731-TA-282 (Third Review). Publication 4207, December 2010.
- Wei, Huang, 2012. An overview of wax production, requirement and supply in the world market. Eur. Chem. Bulletin 2012, 1(7), 266-26.